ããŒããã©ãªãªæé©åã®ããã®Pythonããã¹ã¿ãŒããŸããããçŸä»£ããŒããã©ãªãªçè«ïŒMPTïŒãå¹ççããã³ãã£ã¢ãã°ããŒãã«æè³æåã®ããã®é«åºŠãªãªã¹ã¯ç®¡çæŠç¥ãæ¢æ±ããŸãã
Pythonã«ããããŒããã©ãªãªæé©åïŒã°ããŒãã«æè³å®¶åãçŸä»£ããŒããã©ãªãªçè«ã®æŽ»çš
仿¥ã®çžäºæ¥ç¶ãããéèäžçã«ãããŠãæè³å®¶ã¯é åçãªãããè€éãªèª²é¡ã«çŽé¢ããŠããŸããããã¯ããªã¹ã¯ã广çã«ç®¡çããªããæé©ãªãªã¿ãŒã³ãéæããããã«ãç¡æ°ã®è³ç£ã«ã©ã®ããã«è³æ¬ãé åããããšããããšã§ãã確ç«ãããåžå Žã®æ ªåŒããæ°èåžå Žã®åµåžãååããäžåç£ãŸã§ããã®ç¶æ³ã¯åºå€§ã§çµ¶ããå€åããŠããŸããæè³ããŒããã©ãªãªãäœç³»çã«åæãæé©åããèœåã¯ããã¯ãåãªãå©ç¹ã§ã¯ãªããå¿ èŠäžå¯æ¬ ãªãã®ãšãªã£ãŠããŸããããã§ãçŸä»£ããŒããã©ãªãªçè«ïŒMPTïŒããPythonã®åæèœåãšçµã¿åãããããšã§ãæ å ±ã«åºã¥ããæææ±ºå®ãç®æãã°ããŒãã«æè³å®¶ã«ãšã£ãŠäžå¯æ¬ ãªããŒã«ãšããŠç»å ŽããŸãã
ãã®å æ¬çãªã¬ã€ãã§ã¯ãMPTã®åºç€ãæãäžããPythonãæŽ»çšããŠãã®ååãå®è£ ããæ¹æ³ã瀺ããã°ããŒãã«ãªèŠèŽè åãã«èª¿æŽãããå ç¢ã§åæ£ãããããŒããã©ãªãªãæ§ç¯ã§ããããã«ããŸããäžæ žãšãªãæŠå¿µãå®è·µçãªå®è£ ã¹ããããããã³å°ççãªå¢çãè¶ ããé«åºŠãªèæ ®äºé ãæ¢æ±ããŸãã
åºç€ã®çè§£ïŒçŸä»£ããŒããã©ãªãªçè«ïŒMPTïŒ
MPTã®æ žå¿ã¯ãæå®ã®åžå Žãªã¹ã¯ã¬ãã«ã§æåŸ ãªã¿ãŒã³ãæå€§åããããã®ããŸãã¯éã«æå®ã®æåŸ ãªã¿ãŒã³ã¬ãã«ã§ãªã¹ã¯ãæå°åããããã®æè³ããŒããã©ãªãªæ§ç¯ã®ãã¬ãŒã ã¯ãŒã¯ã§ãã1952幎ã«ããŒãã«è³åè³è ããªãŒã»ããŒã³ãŠã£ããã«ãã£ãŠéçºãããMPTã¯ãåã ã®è³ç£ãå€ç«ããŠè©äŸ¡ãããšãããã©ãã€ã ããè³ç£ãããŒããã©ãªãªå ã§ã©ã®ããã«å ±ã«ããã©ãŒãã³ã¹ãçºæ®ããããèæ ®ãããšãããã®ã«æ ¹æ¬çã«è»¢æãããŸããã
MPTã®åºç€ïŒããªãŒã»ããŒã³ãŠã£ããã®ç»æçãªä»äº
ããŒã³ãŠã£ãã以åã¯ãæè³å®¶ã¯ãã°ãã°åã ã®ãè¯ããæ ªåŒãè³ç£ãæ±ããŠããŸãããããŒã³ãŠã£ããã®é©æ°çãªæŽå¯ã¯ãããŒããã©ãªãªã®ãªã¹ã¯ãšãªã¿ãŒã³ã¯ãåã«åã ã®æ§æèŠçŽ ã®ãªã¹ã¯ãšãªã¿ãŒã³ã®å éå¹³åã§ã¯ãªããšããããšã§ãããããããè³ç£éã®çžäºäœçšãç¹ã«ãããã®äŸ¡æ Œãäºãã«ã©ã®ããã«åããããããŒããã©ãªãªå šäœã®ç¹æ§ã決å®ããäžã§éèŠãªåœ¹å²ãæãããŸãããã®çžäºäœçšã¯çžé¢ãšããæŠå¿µã§æããããŸãã
ãã®äžå¿çãªåæã¯ãšã¬ã¬ã³ãã§ããå®ç§ã«åæããŠåããªãè³ç£ãçµã¿åãããããšã«ãããæè³å®¶ã¯æœåšçãªãªã¿ãŒã³ãç ç²ã«ããããšãªããããŒããã©ãªãªå šäœã®ãã©ãã£ãªãã£ïŒãªã¹ã¯ïŒãåæžã§ããŸãããã®ååã¯ããã°ãã°ããã¹ãŠã®åµãäžã€ã®ç± ã«å ¥ãããªããšèŠçŽããã忣æè³ãå®çŸããããã®å®éçææ®µãæäŸããŸãã
ãªã¹ã¯ãšãªã¿ãŒã³ïŒåºæ¬çãªãã¬ãŒããªã
MPTã¯2ã€ã®äž»èŠãªèŠçŽ ãå®éåããŸãã
- æåŸ ãªã¿ãŒã³ïŒ ããã¯ãæè³å®¶ãç¹å®ã®æéã«æè³ããåŸããšäºæ³ãããå¹³åãªã¿ãŒã³ã§ããããŒããã©ãªãªã®å Žåãéåžžã¯æ§æè³ç£ã®æåŸ ãªã¿ãŒã³ã®å éå¹³åã§ãã
- ãªã¹ã¯ïŒãã©ãã£ãªãã£ïŒïŒ MPTã¯ãçµ±èšçãªåæ£ãŸãã¯ãªã¿ãŒã³ã®æšæºåå·®ããªã¹ã¯ã®äž»èŠãªå°ºåºŠãšããŠäœ¿çšããŸããæšæºåå·®ãé«ãã»ã©ãã©ãã£ãªãã£ãé«ããæåŸ ãªã¿ãŒã³ã®åšãã®å¯èœãªçµæã®ç¯å²ãåºãããšãæå³ããŸãããã®å°ºåºŠã¯ãè³ç£ã®äŸ¡æ Œãæéãšãšãã«ã©ãã ãå€åããããæããŸãã
åºæ¬çãªãã¬ãŒããªãã¯ãããé«ãæåŸ ãªã¿ãŒã³ã¯éåžžãããé«ããªã¹ã¯ã䌎ããšããããšã§ããMPTã¯ããªã¹ã¯ãæå®ã®ãªã¿ãŒã³ã«å¯ŸããŠæå°åãããããŸãã¯ãªã¿ãŒã³ãæå®ã®ãªã¹ã¯ã«å¯ŸããŠæå€§åãããå¹ççããã³ãã£ã¢äžã«ããæé©ãªããŒããã©ãªãªãç¹å®ããããšã§ãæè³å®¶ããã®ãã¬ãŒããªããä¹ãè¶ããã®ãå©ããŸãã
忣æè³ã®éæ³ïŒçžé¢ãéèŠãªçç±
忣æè³ã¯MPTã®ç€ç³ã§ããè³ç£ã¯ãã£ãã«å®ç§ã«åæããŠåããªããããããã¯æ©èœããŸããããè³ç£ã®äŸ¡å€ãäœäžããå Žåãå¥ã®è³ç£ã®äŸ¡å€ã¯å®å®ãããŸãŸãããããã¯äžæããå¯èœæ§ããããããã«ãã£ãп倱ã®äžéšãçžæ®ºããŸãã广çãªåæ£æè³ã®éµã¯ãçžé¢ã®çè§£ã«ãããŸããããã¯ã2ã€ã®è³ç£ã®ãªã¿ãŒã³ãäºãã«ã©ã®ããã«åããã瀺ãçµ±èšçãªå°ºåºŠã§ãã
- æ£ã®çžé¢ïŒ+1ã«è¿ãïŒïŒ è³ç£ã¯åãæ¹åã«åãåŸåããããŸããããããçµã¿åãããŠãã忣æè³ã®ã¡ãªããã¯ã»ãšãã©ãããŸããã
- è² ã®çžé¢ïŒ-1ã«è¿ãïŒïŒ è³ç£ã¯å察æ¹åã«åãåŸåããããŸããããã¯ãäžæ¹ã®è³ç£ã®æå€±ãããäžæ¹ã®è³ç£ã®å©çã«ãã£ãŠçžæ®ºãããããšãå€ãããã倧ããªåæ£æè³ã®ã¡ãªãããæäŸããŸãã
- ãŒãçžé¢ïŒ0ã«è¿ãïŒïŒ è³ç£ã¯ç¬ç«ããŠåããŸããããã¯ãããŒããã©ãªãªå šäœã®ãã©ãã£ãªãã£ãåæžããããšã§ãäŸç¶ãšããŠåæ£æè³ã®ã¡ãªãããæäŸããŸãã
ã°ããŒãã«ãªèŠç¹ããèŠããšã忣æè³ã¯åäžåžå Žå ã®ããŸããŸãªçš®é¡ã®äŒæ¥ãè¶ ãããã®ã§ããããã¯ã以äžã«ããã£ãŠæè³ã忣ãããããšãå«ã¿ãŸãã
- å°çïŒ ç°ãªãåœãçµæžåïŒäŸïŒåç±³ããšãŒããããã¢ãžã¢ãæ°èåžå ŽïŒãžã®æè³ã
- è³ç£ã¯ã©ã¹ïŒ æ ªåŒãåµåžïŒå ¬åµïŒãäžåç£ãååãä»£æ¿æè³ã®çµã¿åããã
- ç£æ¥/ã»ã¯ã¿ãŒïŒ ãã¯ãããžãŒããã«ã¹ã±ã¢ããšãã«ã®ãŒãçæŽ»å¿ éåãªã©ã«ããã忣æè³ã
ã°ããŒãã«è³ç£ã®å€æ§ãªé åã«åæ£ããããã®ãªã¿ãŒã³ãé«åºŠã«çžé¢ããŠããªãããŒããã©ãªãªã¯ãåäžåžå Žã®äžèœãå°æ¿åŠçã€ãã³ãããŸãã¯çµæžçã·ã§ãã¯ã«å¯Ÿããå šäœçãªãªã¹ã¯ãšã¯ã¹ããŒãžã£ãŒãå€§å¹ ã«åæžã§ããŸãã
å®çšçãªé©çšã®ããã®MPTã®äž»èŠæŠå¿µ
MPTãå®è£ ããããã«ã¯ãPythonãç°¡åã«èšç®ã§ããããã€ãã®å®éçæŠå¿µãçè§£ããå¿ èŠããããŸãã
æåŸ ãªã¿ãŒã³ãšãã©ãã£ãªãã£
åäžè³ç£ã®å ŽåãæåŸ ãªã¿ãŒã³ã¯ãç¹å®ã®æéã«ããããã®ãªã¿ãŒã³ã®éå»ã®å¹³åãšããŠèšç®ãããããšããããããŸããããŒããã©ãªãªã®å ŽåãæåŸ ãªã¿ãŒã³ïŒE[R_p]ïŒã¯ãåã ã®è³ç£ã®æåŸ ãªã¿ãŒã³ã®å éåèšã§ãã
E[R_p] = Σ (w_i * E[R_i])
ããã§ãw_iã¯ããŒããã©ãªãªå ã®è³ç£iã®ãŠã§ã€ãïŒå²åïŒãE[R_i]ã¯è³ç£iã®æåŸ ãªã¿ãŒã³ã§ãã
ããããããŒããã©ãªãªã®ãã©ãã£ãªãã£ïŒÏ_pïŒã¯ãåã«åã ã®è³ç£ã®ãã©ãã£ãªãã£ã®å éå¹³åã§ã¯ãããŸãããããã¯ãè³ç£éã®å ±åæ£ïŒãŸãã¯çžé¢ïŒã«æ±ºå®çã«äŸåããŸãã2è³ç£ããŒããã©ãªãªã®å Žåã
Ï_p = â[ (w_A^2 * Ï_A^2) + (w_B^2 * Ï_B^2) + (2 * w_A * w_B * Cov(A, B)) ]
ããã§ãÏ_AãšÏ_Bã¯è³ç£AãšBã®æšæºåå·®ãCov(A, B)ã¯ãããã®å ±åæ£ã§ããè³ç£æ°ãå€ãããŒããã©ãªãªã®å Žåããã®åŒã¯ãŠã§ã€ããã¯ãã«ãšå ±åæ£è¡åãå«ãè¡åä¹ç®ã«æ¡åŒµãããŸãã
å ±åæ£ãšçžé¢ïŒè³ç£ã®çžäºäœçš
- å ±åæ£ïŒ 2ã€ã®å€æ°ïŒè³ç£ãªã¿ãŒã³ïŒãã©ãã ãäžç·ã«åãããæž¬å®ããŸããæ£ã®å ±åæ£ã¯ãããããåãæ¹åã«åãåŸåãããããšã瀺ããè² ã®å ±åæ£ã¯ãããããå察æ¹åã«åãåŸåãããããšã瀺ããŸãã
- çžé¢ïŒ å ±åæ£ã®æšæºåãããããŒãžã§ã³ã§ã-1ãã+1ã®ç¯å²ã§ããå ±åæ£ãããè§£éã容æã§ããåè¿°ã®ããã«ãäœãïŒãŸãã¯è² ã®ïŒçžé¢ã¯åæ£æè³ã«æãŸããã§ãã
ãããã®ææšã¯ãããŒããã©ãªãªã®ãã©ãã£ãªãã£ãèšç®ããããã®éèŠãªå ¥åã§ããã忣æè³ãã©ã®ããã«æ©èœããããæ°åŠçã«å ·çŸåãããã®ã§ãã
å¹ççããã³ãã£ã¢ïŒæå®ã®ãªã¹ã¯ã«å¯Ÿãããªã¿ãŒã³ã®æå€§å
MPTã®æãèŠèŠçã«é åçãªåºåã¯ãå¹ççããã³ãã£ã¢ã§ããè³ç£ãšãŠã§ã€ãã®ãŠããŒã¯ãªçµã¿åãããæã€æ°åã®å¯èœãªããŒããã©ãªãªããX軞ãããŒããã©ãªãªãªã¹ã¯ïŒãã©ãã£ãªãã£ïŒãY軞ãããŒããã©ãªãªãªã¿ãŒã³ã衚ãã°ã©ãã«ãããããããšæ³åããŠãã ãããçµæã®æ£åžå³ã¯ç¹ã®é²ã圢æããŸãã
å¹ççããã³ãã£ã¢ã¯ããã®é²ã®äžéã§ããããã¯ãæå®ã®ãªã¹ã¯ã¬ãã«ã«å¯ŸããŠæé«ã®æåŸ ãªã¿ãŒã³ãæäŸããããŸãã¯æå®ã®æåŸ ãªã¿ãŒã³ã¬ãã«ã«å¯ŸããŠãªã¹ã¯ãæå°åããæé©ãªããŒããã©ãªãªã®ã»ããã衚ããŸããããã³ãã£ã¢ãäžåãããŒããã©ãªãªã¯ãåããªã¹ã¯ã§ãªã¿ãŒã³ãå°ãªãããåããªã¿ãŒã³ã§ãªã¹ã¯ãå€ããã®ããããã§ãããããæé©ã§ã¯ãããŸãããæè³å®¶ã¯å¹ççããã³ãã£ã¢äžã®ããŒããã©ãªãªã®ã¿ãæ€èšãã¹ãã§ãã
æé©ãªããŒããã©ãªãªïŒãªã¹ã¯èª¿æŽåŸãªã¿ãŒã³ã®æå€§å
å¹ççããã³ãã£ã¢ã¯æé©ãªããŒããã©ãªãªã®ç¯å²ãæäŸããŸããããæè¯ãã®ããŒããã©ãªãªã¯åã ã®æè³å®¶ã®ãªã¹ã¯èš±å®¹åºŠã«ãã£ãŠç°ãªããŸããããããMPTã¯ãã°ãã°ãªã¹ã¯èª¿æŽåŸãªã¿ãŒã³ã®èгç¹ããæ®éçã«æé©ãšèŠãªãããåäžã®ããŒããã©ãªãªãç¹å®ããŸããããã¯æå€§ã·ã£ãŒãã¬ã·ãªããŒããã©ãªãªã§ãã
ããŒãã«è³åè³è ãŠã£ãªã¢ã ã»Fã»ã·ã£ãŒãã«ãã£ãŠéçºãããã·ã£ãŒãã¬ã·ãªã¯ããªã¹ã¯ïŒæšæºåå·®ïŒåäœãããã®è¶ éãªã¿ãŒã³ïŒãªã¹ã¯ããªãŒã¬ãŒããäžåããªã¿ãŒã³ïŒã枬å®ããŸããã·ã£ãŒãã¬ã·ãªãé«ãã»ã©ããªã¹ã¯èª¿æŽåŸãªã¿ãŒã³ãè¯ãããšã瀺ããŸããå¹ççããã³ãã£ã¢äžã§æãé«ãã·ã£ãŒãã¬ã·ãªãæã€ããŒããã©ãªãªã¯ããã°ãã°ãæ¥ç¹ããŒããã©ãªãªããšåŒã°ããŸããããã¯ããªã¹ã¯ããªãŒã¬ãŒãããå¹ççããã³ãã£ã¢ã«æ¥ããç·ãåŒãããç¹ã§ããããã§ãããã®ããŒããã©ãªãªã¯ãçè«çã«ã¯ãªã¹ã¯ããªãŒè³ç£ãšçµã¿åãããã®ã«æãå¹ççã§ãã
PythonãããŒããã©ãªãªæé©åã®ããã®æšæºããŒã«ã§ããçç±
èšééèã«ãããPythonã®å°é ã¯å¶ç¶ã§ã¯ãããŸããããã®å€çšéæ§ãåºç¯ãªã©ã€ãã©ãªã䜿ããããã¯ãç¹ã«å€æ§ãªããŒã¿ãœãŒã¹ãæã€ã°ããŒãã«ãªèŠèŽè ã«ãšã£ãŠãMPTã®ãããªè€éãªéèã¢ãã«ãå®è£ ããããã®çæ³çãªèšèªãšãªã£ãŠããŸãã
ãªãŒãã³ãœãŒã¹ãšã³ã·ã¹ãã ïŒã©ã€ãã©ãªãšãã¬ãŒã ã¯ãŒã¯
Pythonã¯ãéèããŒã¿åæãšæé©åã«æé©ãªãªãŒãã³ãœãŒã¹ã©ã€ãã©ãªã®è±å¯ãªãšã³ã·ã¹ãã ãèªã£ãŠããŸãã
pandasïŒ æç³»åããŒã¿ãç¹ã«å±¥æŽæ ªäŸ¡ããŒã¿ã䜿çšããããŒã¿æäœãšåæã«äžå¯æ¬ ã§ãããã®DataFrameã¯ã倧éã®ããŒã¿ãåŠçããããã®çŽæçãªæ¹æ³ãæäŸããŸããNumPyïŒ Pythonã§ã®æ°å€èšç®ã®åºç€ã§ããããªã¿ãŒã³ãå ±åæ£è¡åãããŒããã©ãªãªçµ±èšã®èšç®ã«äžå¯æ¬ ãªåŒ·åãªé åãªããžã§ã¯ããšæ°åŠé¢æ°ãæäŸããŸããMatplotlib/SeabornïŒ é«å質ã®èŠèŠåãäœæããããã®åªããã©ã€ãã©ãªã§ãå¹ççããã³ãã£ã¢ãè³ç£ãªã¿ãŒã³ããªã¹ã¯ãããã¡ã€ã«ã®ããããã«äžå¯æ¬ ã§ããSciPyïŒç¹ã«scipy.optimizeïŒïŒ å¶çŽä»ãæé©ååé¡ã解決ããããšã«ãã£ãŠãå¹ççããã³ãã£ã¢äžã®æå°ãã©ãã£ãªãã£ãŸãã¯æå€§ã·ã£ãŒãã¬ã·ãªããŒããã©ãªãªãæ°åŠçã«èŠã€ããããšãã§ããæé©åã¢ã«ãŽãªãºã ãå«ãã§ããŸããyfinanceïŒãŸãã¯ä»ã®éèããŒã¿APIïŒïŒ ããŸããŸãªã°ããŒãã«ååŒæããã®å±¥æŽåžå ŽããŒã¿ãžã®ç°¡åãªã¢ã¯ã»ã¹ã容æã«ããŸãã
ã¢ã¯ã»ã·ããªãã£ãšã³ãã¥ããã£ãµããŒã
Pythonã®æ¯èŒçç·©ãããªåŠç¿æ²ç·ã¯ãéèåŠçããçµéšè±å¯ãªã¯ãªã³ããŸã§ãå¹ åºãå°éå®¶ãã¢ã¯ã»ã¹ã§ããããã«ããŸãããã®å·šå€§ãªã°ããŒãã«ã³ãã¥ããã£ã¯ãè±å¯ãªãªãœãŒã¹ããã¥ãŒããªã¢ã«ããã©ãŒã©ã ãç¶ç¶çãªéçºãæäŸããŠãããæ°ããããŒã«ããã¯ããã¯ãåžžã«ç»å ŽãããµããŒãã容æã«å©çšã§ããããšãä¿èšŒããŸãã
倿§ãªããŒã¿ãœãŒã¹ã®åŠç
ã°ããŒãã«æè³å®¶ã«ãšã£ãŠãç°ãªãåžå Žãé貚ãè³ç£ã¯ã©ã¹ããã®ããŒã¿ãæ±ãããšã¯éåžžã«éèŠã§ããPythonã®ããŒã¿åŠçæ©èœã«ããã以äžã®ãããªããŒã¿ãœãŒã¹ã®ã·ãŒã ã¬ã¹ãªçµ±åãå¯èœã«ãªããŸãã
- äž»èŠãªæ ªäŸ¡ææ°ïŒäŸïŒS&P 500ãEURO STOXX 50ãæ¥çµ225ãCSI 300ãIbovespaïŒã
- ããŸããŸãªåœã®åœåµïŒäŸïŒç±³åœåµããã€ãåœåµãæ¥æ¬åœåµïŒã
- ååïŒäŸïŒéãåæ²¹ã蟲ç£ç©ïŒã
- é貚ãšçºæ¿ã¬ãŒãã
- ä»£æ¿æè³ïŒäŸïŒREITããã©ã€ããŒããšã¯ã€ãã£ææ°ïŒã
Pythonã¯ãçµ±åãããããŒããã©ãªãªæé©åããã»ã¹ã§ãããã®ç°ãªãããŒã¿ã»ãããç°¡åã«ååŸãã調åãããããšãã§ããŸãã
è€éãªèšç®ã®ããã®é床ãšã¹ã±ãŒã©ããªãã£
MPTã®èšç®ã¯ãç¹ã«è³ç£æ°ãå€ãã£ãããã¢ã³ãã«ã«ãã·ãã¥ã¬ãŒã·ã§ã³äžã ã£ãããããšãéäžçã«ãªãå¯èœæ§ããããŸãããPythonã¯ãCã§æé©åãããNumPyã®ãããªã©ã€ãã©ãªã§è£åŒ·ãããããšãå€ãããããã®èšç®ãå¹ççã«å®è¡ã§ããŸãããã®ã¹ã±ãŒã©ããªãã£ã¯ãå¹ççããã³ãã£ã¢ãæ£ç¢ºã«ãããã³ã°ããããã«ãæ°åãããã«ã¯æ°çŸäžãã®å¯èœãªããŒããã©ãªãªã®çµã¿åãããæ¢çŽ¢ããéã«äžå¯æ¬ ã§ãã
å®è·µçãªå®è£ ïŒPythonã§MPTãªããã£ãã€ã¶ãŒãæ§ç¯ãã
ã°ããŒãã«ãªèŠèŽè ã«ãšã£ãŠæŠå¿µçã«æç¢ºã«ä¿ã€ããã«ãå ·äœçãªã³ãŒãè¡ã§ã¯ãªããã¹ããããšæ ¹æ¬çãªããžãã¯ã«çŠç¹ãåœãŠãPythonã䜿çšããMPTãªããã£ãã€ã¶ãŒã®æ§ç¯ããã»ã¹ãæŠèª¬ããŸãã
ã¹ããã1ïŒããŒã¿åéãšååŠç
æåã®ã¹ãããã¯ãããŒããã©ãªãªã«å«ãããè³ç£ã®å±¥æŽäŸ¡æ ŒããŒã¿ãåéããããšã§ããã°ããŒãã«ãªèŠç¹ããã¯ãããŸããŸãªå°åãè³ç£ã¯ã©ã¹ã衚ãäžå Žæè³ä¿¡èšïŒETFïŒããŸãã¯ããŸããŸãªåžå Žã®å奿 ªåŒãéžæããå ŽåããããŸãã
- ããŒã«ïŒ
yfinanceã®ãããªã©ã€ãã©ãªã¯ãYahoo Financeã®ãããªãã©ãããã©ãŒã ããå±¥æŽæ ªäŸ¡ãåµåžãETFããŒã¿ãååŸããã®ã«æé©ã§ããããã¯å€ãã®ã°ããŒãã«ååŒæãã«ããŒããŠããŸãã - ããã»ã¹ïŒ
- è³ç£ãã£ãã«ãŒã®ãªã¹ããå®çŸ©ããŸãïŒäŸïŒS&P 500 ETFã®ãSPYããiShares Germany ETFã®ãEWGããGold ETFã®ãGLDããªã©ïŒã
- å±¥æŽæ¥ä»ç¯å²ãæå®ããŸãïŒäŸïŒéå»5幎éã®æ¥æ¬¡ãŸãã¯ææ¬¡ããŒã¿ïŒã
- åè³ç£ã®ã調æŽåŸçµå€ããããŠã³ããŒãããŸãã
- ãããã®èª¿æŽåŸçµå€ããæ¥æ¬¡ãŸãã¯ææ¬¡ãªã¿ãŒã³ãèšç®ããŸãããããã¯MPTèšç®ã«äžå¯æ¬ ã§ãããªã¿ãŒã³ã¯éåžžã`(çŸåšã®äŸ¡æ Œ / åã®äŸ¡æ Œ) - 1`ãšããŠèšç®ãããŸãã
- æ¬ æããŒã¿ãåŠçããŸãïŒäŸïŒ`NaN`å€ãå«ãè¡ãåé€ããããåæ¹/åŸæ¹ãã£ã«ã¡ãœããã䜿çšããŸãïŒã
ã¹ããã2ïŒããŒããã©ãªãªçµ±èšã®èšç®
å±¥æŽãªã¿ãŒã³ãåŸãããããMPTã«å¿ èŠãªçµ±èšçå ¥åãèšç®ã§ããŸãã
- 幎次åæåŸ ãªã¿ãŒã³ïŒ åè³ç£ã«ã€ããŠãç¹å®ã®æéã«ãããå±¥æŽæ¥æ¬¡/ææ¬¡ãªã¿ãŒã³ã®å¹³åãèšç®ããããã幎次åããŸããããšãã°ãæ¥æ¬¡ãªã¿ãŒã³ã®å Žåãå¹³åæ¥æ¬¡ãªã¿ãŒã³ã«252ïŒå¹Žéã®ååŒæ¥æ°ïŒãæããŸãã
- 幎次åå ±åæ£è¡åïŒ ãã¹ãŠã®è³ç£ã®æ¥æ¬¡/ææ¬¡ãªã¿ãŒã³ã®å ±åæ£è¡åãèšç®ããŸãããã®è¡åã¯ãåè³ç£ãã¢ãã©ã®ããã«äžç·ã«åããã瀺ããŸãã幎éã®ååŒæéæ°ïŒäŸïŒæ¥æ¬¡ããŒã¿ã®å Žåã¯252ïŒãæããŠããã®è¡åã幎次åããŸãããã®è¡åã¯ãããŒããã©ãªãªãªã¹ã¯èšç®ã®äžå¿ã§ãã
- ç¹å®ã®ãŠã§ã€ãã»ããã«å¯ŸããããŒããã©ãªãªãªã¿ãŒã³ãšãã©ãã£ãªãã£ïŒ è³ç£ãŠã§ã€ãã®ã»ãããå ¥åãšããŠåãåããèšç®ãããæåŸ ãªã¿ãŒã³ãšå ±åæ£è¡åã䜿çšããŠãããŒããã©ãªãªã®æåŸ ãªã¿ãŒã³ãšãã®æšæºåå·®ïŒãã©ãã£ãªãã£ïŒãèšç®ãã颿°ãéçºããŸãããã®é¢æ°ã¯ãæé©åäžã«ç¹°ãè¿ãåŒã³åºãããŸãã
ã¹ããã3ïŒã©ã³ãã ããŒããã©ãªãªã®ã·ãã¥ã¬ãŒã·ã§ã³ïŒã¢ã³ãã«ã«ãã¢ãããŒãïŒ
æ£åŒãªæé©åã«é²ãåã«ãã¢ã³ãã«ã«ãã·ãã¥ã¬ãŒã·ã§ã³ã¯æè³ãŠãããŒã¹ã®èŠèŠçãªçè§£ãæäŸã§ããŸãã
- ããã»ã¹ïŒ
- 倧éïŒäŸïŒ10,000ïœ100,000ïŒã®ã©ã³ãã ãªããŒããã©ãªãªãŠã§ã€ãã®çµã¿åãããçæããŸããåçµã¿åããã«ã€ããŠããŠã§ã€ãã®åèšã1ïŒ100ïŒ ã®é åã衚ãïŒã§ãããéè² ïŒç©ºå£²ããªãïŒã§ããããšã確èªããŸãã
- åã©ã³ãã ããŒããã©ãªãªã«ã€ããŠãã¹ããã2ã§éçºãã颿°ã䜿çšããŠãæåŸ ãªã¿ãŒã³ããã©ãã£ãªãã£ãã·ã£ãŒãã¬ã·ãªãèšç®ããŸãã
- ãããã®çµæïŒãŠã§ã€ãããªã¿ãŒã³ããã©ãã£ãªãã£ãã·ã£ãŒãã¬ã·ãªïŒããªã¹ããŸãã¯
pandasDataFrameã«ä¿åããŸãã
ãã®ã·ãã¥ã¬ãŒã·ã§ã³ã«ãããæ°åã®å¯èœãªããŒããã©ãªãªã®æ£åžå³ãäœæãããå¹ççããã³ãã£ã¢ã®ããããã®åœ¢ç¶ãšé«ã·ã£ãŒãã¬ã·ãªããŒããã©ãªãªã®äœçœ®ãèŠèŠçã«ç¹å®ã§ããŸãã
ã¹ããã4ïŒå¹ççããã³ãã£ã¢ãšæé©ãªããŒããã©ãªãªã®æ€çŽ¢
ã¢ã³ãã«ã«ãã¯è¯ãè¿äŒŒãæäŸããŸãããæ°åŠçæé©åã¯æ£ç¢ºãªãœãªã¥ãŒã·ã§ã³ãæäŸããŸãã
- ããŒã«ïŒ
scipy.optimize.minimizeã¯ãPythonã§ã®å¶çŽä»ãæé©ååé¡ã®äž»èŠãªé¢æ°ã§ãã - æå°ãã©ãã£ãªãã£ããŒããã©ãªãªã®ããã»ã¹ïŒ
- æå°åããç®ç颿°ãå®çŸ©ããŸããããŒããã©ãªãªãã©ãã£ãªãã£ã
- å¶çŽãå®çŸ©ããŸãããã¹ãŠã®ãŠã§ã€ãã¯éè² ã§ãªããã°ãªããããã¹ãŠã®ãŠã§ã€ãã®åèšã¯1ã§ãªããã°ãªããŸããã
scipy.optimize.minimizeã䜿çšããŠããããã®å¶çŽã®äžã§ãã©ãã£ãªãã£ãæå°åãããŠã§ã€ãã®ã»ãããèŠã€ããŸãã
- æå€§ã·ã£ãŒãã¬ã·ãªããŒããã©ãªãªã®ããã»ã¹ïŒ
- æå€§åããç®ç颿°ãå®çŸ©ããŸããã·ã£ãŒãã¬ã·ãªã
scipy.optimize.minimizeã¯æå°åãããããå®éã«ã¯è² ã®ã·ã£ãŒãã¬ã·ãªãæå°åããããšã«ãªããŸãã - äžèšãšåãå¶çŽã䜿çšããŸãã
- ãªããã£ãã€ã¶ãŒãå®è¡ããŠãæãé«ãã·ã£ãŒãã¬ã·ãªããããããŠã§ã€ããèŠã€ããŸããããã¯MPTã§æãæ±ããããããŒããã©ãªãªã§ããããšããããããŸãã
- æå€§åããç®ç颿°ãå®çŸ©ããŸããã·ã£ãŒãã¬ã·ãªã
- å®å
šãªå¹ççããã³ãã£ã¢ã®çæïŒ
- ã¿ãŒã²ããæåŸ ãªã¿ãŒã³ã®ç¯å²ãå埩åŠçããŸãã
- åã¿ãŒã²ãããªã¿ãŒã³ã«ã€ããŠã
scipy.optimize.minimizeã䜿çšããŠããŠã§ã€ãã®åèšã1ã§éè² ã§ããããã€ããŒããã©ãªãªã®æåŸ ãªã¿ãŒã³ãçŸåšã®ã¿ãŒã²ãããªã¿ãŒã³ã«çãããšããå¶çŽã®äžã§ããã©ãã£ãªãã£ãæå°åããããŒããã©ãªãªãèŠã€ããŸãã - ãããã®æå°åãªã¹ã¯ããŒããã©ãªãªããšã«ãã©ãã£ãªãã£ãšãªã¿ãŒã³ãåéããŸãããããã®ç¹ã¯å¹ççããã³ãã£ã¢ã圢æããŸãã
ã¹ããã5ïŒçµæã®èŠèŠå
èŠèŠåã¯ãããŒããã©ãªãªæé©åã®çµæãçè§£ããäŒããããã®éµã§ãã
- ããŒã«ïŒ
MatplotlibãšSeabornã¯ãæç¢ºã§æçãªãããããäœæããã®ã«åªããŠããŸãã - ããããèŠçŽ ïŒ
- ãã¹ãŠã®ã·ãã¥ã¬ãŒã·ã§ã³ãããã¢ã³ãã«ã«ãããŒããã©ãªãªïŒãªã¹ã¯å¯Ÿãªã¿ãŒã³ïŒã®æ£åžå³ã
- æ°åŠçã«å°åºãããæé©ãªããŒããã©ãªãªãæ¥ç¶ããå¹ççããã³ãã£ã¢ã©ã€ã³ãéããŠè¡šç€ºããŸãã
- æå°ãã©ãã£ãªãã£ããŒããã©ãªãªïŒå¹ççããã³ãã£ã¢ã®æãå·Šã®ç¹ïŒã匷調衚瀺ããŸãã
- æå€§ã·ã£ãŒãã¬ã·ãªããŒããã©ãªãªïŒæ¥ç¹ããŒããã©ãªãªïŒã匷調衚瀺ããŸãã
- ãªãã·ã§ã³ã§ãåã ã®è³ç£ãã€ã³ããããããããŠãããããããã³ãã£ã¢ã«å¯ŸããŠã©ãã«ãããã確èªããŸãã
- è§£éïŒ ãã®ã°ã©ãã¯ã忣æè³ã®æŠå¿µãèŠèŠçã«ç€ºããããŸããŸãªè³ç£ã®çµã¿åãããã©ã®ããã«ç°ãªããªã¹ã¯/ãªã¿ãŒã³ã®ãããã¡ã€ã«ã«ã€ãªãããã瀺ããæãå¹ççãªããŒããã©ãªãªãæç¢ºã«ç¹å®ããŸãã
åºæ¬MPTãè¶ ããŠïŒé«åºŠãªèæ ®äºé ãšæ¡åŒµ
MPTã¯åºæ¬çã§ãããéçããããŸãã幞ããªããšã«ãçŸä»£ã®èšééèã¯ããããã®æ¬ ç¹ã«å¯ŸåŠããæ¡åŒµæ©èœãšä»£æ¿ã¢ãããŒããæäŸããŠããŸãããã®å€ãã¯Pythonã§ãå®è£ å¯èœã§ãã
MPTã®éçïŒããŒã³ãŠã£ãããã«ããŒããªãã£ãããš
- ãªã¿ãŒã³ã®æ£èŠååžã®ä»®å®ïŒ MPTã¯ãªã¿ãŒã³ãæ£èŠååžãããšä»®å®ããŸãããå®éã®åžå Žã§ã¯åžžã«ãããšã¯éããŸããïŒäŸïŒã倪ãå°ŸããŸãã¯æ¥µç«¯ãªã€ãã³ãã¯ãæ£èŠååžã瀺åãããã®ãããäžè¬çã§ãïŒã
- å±¥æŽããŒã¿ãžã®äŸåïŒ MPTã¯ãå±¥æŽãªã¿ãŒã³ããã©ãã£ãªãã£ãçžé¢ã«å€§ããäŸåããŸãããéå»ã®ããã©ãŒãã³ã¹ã¯å°æ¥ã®çµæãä¿èšŒãããã®ã§ã¯ãããŸãããã§ãããåžå Žã®ã¬ãžãŒã ã¯å€åããå¯èœæ§ããããå±¥æŽããŒã¿ã¯äºæž¬æ§ãäœäžããŸãã
- åäžæéã¢ãã«ïŒ MPTã¯åäžæéã¢ãã«ã§ãããæè³æ±ºå®ã1ã€ã®æç¹ããåäžã®å°æ¥æéã«å¯ŸããŠè¡ããããšä»®å®ããŸããåçãªãªãã©ã³ã¹ãè€æ°æéã®æè³ãã©ã€ãºã³ãåœç¶ã®ããšãªããèæ ®ããŠããŸããã
- ååŒã³ã¹ããçšéãæµåæ§ïŒ åºæ¬çãªMPTã¯ãæ£å³ãªã¿ãŒã³ã«å€§ãã圱é¿ããå¯èœæ§ã®ããååŒã³ã¹ããå©çã«å¯Ÿããçšéãè³ç£ã®æµåæ§ãªã©ã®çŸå®äžçã®ã¯ã£ããããªãèŠçŽ ãèæ ®ããŠããŸããã
- æè³å®¶ã®å¹çšé¢æ°ïŒ å¹ççããã³ãã£ã¢ãæäŸããŸãããç¹å®ã®å¹çšé¢æ°ïŒãªã¹ã¯åé¿åºŠïŒãç¥ããã«ãããã³ãã£ã¢äžã®ã©ã®ããŒããã©ãªãªãçã«ãæé©ãã§ããããæè³å®¶ã«äŒããããšã¯ãããŸããã
éçãžã®å¯Ÿå¿ïŒçŸä»£ã®åŒ·å
- ãã©ãã¯ã»ãªãã¿ãŒãã³ã¢ãã«ïŒ MPTã®ãã®æ¡åŒµæ©èœã«ãããæè³å®¶ã¯èªèº«ã®èŠè§£ïŒäž»èгçãªäºæž¬ïŒãæé©åããã»ã¹ã«çµã¿èŸŒãããšãã§ããå±¥æŽããŒã¿ã®ã¿ã«é Œãã®ã§ã¯ãªããå°æ¥ãèŠæ®ããæŽå¯ã§å±¥æŽããŒã¿ãç·©åããŸããããã¯ãå±¥æŽããŒã¿ãçŸåšã®åžå Žç¶æ³ãŸãã¯æè³å®¶ã®ä¿¡å¿µãå®å šã«åæ ããŠããªãå Žåã«ç¹ã«åœ¹ç«ã¡ãŸãã
- ãªãµã³ããªã³ã°ãããå¹ççããã³ãã£ã¢ïŒ ãªãã£ãŒãã»ãã·ã§ãŒã«ãã£ãŠææ¡ããããã®æè¡ã¯ãMPTãå ¥åãšã©ãŒïŒæåŸ ãªã¿ãŒã³ãšå ±åæ£ã®æšå®èª€å·®ïŒã«ææã§ãããšããåé¡ã«å¯ŸåŠããŸããããã¯ããããã«å€æŽãããå ¥åïŒããŒãã¹ãã©ãããããå±¥æŽããŒã¿ïŒã§MPTãè€æ°åå®è¡ããçµæã®å¹ççããã³ãã£ã¢ãå¹³ååããŠãããå ç¢ã§å®å®ããæé©ãªããŒããã©ãªãªãäœæããããšãå«ã¿ãŸãã
- æ¡ä»¶ä»ãããªã¥ãŒã»ã¢ããã»ãªã¹ã¯ïŒCVaRïŒæé©åïŒ æšæºåå·®ïŒäžæ¹ãšäžæ¹ã®ãã©ãã£ãªãã£ãåçã«æ±ãïŒã®ã¿ã«çŠç¹ãåœãŠãã®ã§ã¯ãªããCVaRæé©åã¯ããŒã«ãªã¹ã¯ãã¿ãŒã²ããã«ããŸããããã¯ãæå€±ããããããå€ãè¶ ããå Žåã«äºæ³ãããæå€±ãæå°åããããšããç¹ã«ãã©ãã£ãªãã£ã®é«ãã°ããŒãã«åžå Žã§ãäžèœãªã¹ã¯ç®¡çã®ããã®ããå ç¢ãªå°ºåºŠãæäŸããŸãã
- ãã¡ã¯ã¿ãŒã¢ãã«ïŒ ãããã®ã¢ãã«ã¯ãçµæžãŸãã¯åžå Žã®æ ¹åºã«ãããã¡ã¯ã¿ãŒïŒäŸïŒåžå Žãªã¹ã¯ããµã€ãºãããªã¥ãŒãã¢ã¡ã³ã¿ã ïŒãžã®ãšã¯ã¹ããŒãžã£ãŒã«åºã¥ããŠè³ç£ãªã¿ãŒã³ã説æããŸãããã¡ã¯ã¿ãŒã¢ãã«ãããŒããã©ãªãªæ§ç¯ã«çµ±åããããšã§ãç¹ã«ããŸããŸãªã°ããŒãã«åžå Žã«é©çšãããå Žåã«ããã忣ããããªã¹ã¯ç®¡çãããããŒããã©ãªãªã«ã€ãªããå¯èœæ§ããããŸãã
- ããŒããã©ãªãªç®¡çã«ãããæ©æ¢°åŠç¿ïŒ æ©æ¢°åŠç¿ã¢ã«ãŽãªãºã ã¯ãããŒããã©ãªãªæé©åã®ããŸããŸãªåŽé¢ã匷åããããã«äœ¿çšã§ããŸããå°æ¥ã®ãªã¿ãŒã³ã®äºæž¬ã¢ãã«ãå ±åæ£è¡åã®æ¹åãããæšå®ãè³ç£éã®éç·åœ¢é¢ä¿ã®ç¹å®ãåçè³ç£é åæŠç¥ãªã©ã§ãã
ã°ããŒãã«æè³ã®èŠç¹ïŒå€æ§ãªåžå Žã®ããã®MPT
ã°ããŒãã«ãªæèã§MPTãé©çšããã«ã¯ãããŸããŸãªåžå Žãçµæžã·ã¹ãã å šäœã§ãã®æå¹æ§ã確ä¿ããããã«ã远å ã®èæ ®äºé ãå¿ èŠã§ãã
é貚ãªã¹ã¯ïŒãããžãšãªã¿ãŒã³ãžã®åœ±é¿
å€åœè³ç£ãžã®æè³ã¯ãããŒããã©ãªãªãé貚å€åã«ããããŸããæè³å®¶ã®åºæºéè²šã«æç®ãããšãèªåœé貚ã匷ããšãå€åœæè³ããã®ãªã¿ãŒã³ã䟵é£ãããå¯èœæ§ããããŸããã°ããŒãã«æè³å®¶ã¯ããã®é貚ãªã¹ã¯ããããžããïŒäŸïŒãã©ã¯ãŒãå¥çŽãé貚ETFã䜿çšããïŒãããããžããªãããæå©ãªé貚ã®åãããå©çãåŸãå¯èœæ§ããããŸããã远å ã®ãã©ãã£ãªãã£ã«ãããããããšã«ãªããŸãã
å°æ¿åŠçãªã¹ã¯ïŒçžé¢ãšãã©ãã£ãªãã£ã«ã©ã®ããã«åœ±é¿ããã
ã°ããŒãã«åžå Žã¯çžäºæ¥ç¶ãããŠããŸãããå°æ¿åŠçãªã€ãã³ãïŒäŸïŒè²¿ææŠäºãæ¿æ²»çäžå®å®ãçŽäºïŒã¯ããã°ãã°äºæž¬äžå¯èœã«è³ç£ã®çžé¢ãšãã©ãã£ãªãã£ã«å€§ããªåœ±é¿ãäžããå¯èœæ§ããããŸããMPTã¯å±¥æŽçžé¢ãå®éåããŸãããç¹ã«é«åºŠã«åæ£ãããã°ããŒãã«ããŒããã©ãªãªã§ã¯ãæ å ±ã«åºã¥ããè³ç£é åã®ããã«ã¯ãå°æ¿åŠçãªã¹ã¯ã®è³ªçãªè©äŸ¡ãäžå¯æ¬ ã§ãã
åžå Žãã¯ãæ§é ã®éãïŒæµåæ§ãå°åéã®ååŒæé
äžçäžã®åžå Žã¯ãç°ãªãååŒæéãæµåæ§ã¬ãã«ãèŠå¶æ çµã¿ã§éå¶ãããŠããŸãããããã®èŠå ã¯ãç¹ã«ã¢ã¯ãã£ããã¬ãŒããŒãå€§èŠæš¡ãªæ©é¢æè³å®¶ã«ãšã£ãŠãæè³æŠç¥ã®å®è·µçãªå®è£ ã«åœ±é¿ãäžããå¯èœæ§ããããŸããPythonã¯ãããã®ããŒã¿ã®è€éãã管çããã®ã«åœ¹ç«ã¡ãŸãããæè³å®¶ã¯éçšäžã®çŸå®ãèªèããŠããå¿ èŠããããŸãã
èŠå¶ç°å¢ïŒçšåäžã®åœ±é¿ãæè³å¶é
çšå¶ã¯ã管èœåºåãè³ç£ã¯ã©ã¹ã«ãã£ãŠå€§ããç°ãªããŸããå€åœæè³ããã®å©çã¯ãç°ãªããã£ãã¿ã«ã²ã€ã³çšãŸãã¯é åœçšã®å¯Ÿè±¡ãšãªãå¯èœæ§ããããŸããäžéšã®åœã§ã¯ãç¹å®ã®è³ç£ã®å€åœæææš©ã«å¶éã課ãããŠããŸããã°ããŒãã«MPTã¢ãã«ã¯ãçã«å®è¡å¯èœãªã¢ããã€ã¹ãæäŸããããã«ããããã®çŸå®äžçã®ãªãœãŒã¹ãçµã¿èŸŒãã¹ãã§ãã
è³ç£ã¯ã©ã¹éã®åæ£ïŒæ ªåŒãåµåžãäžåç£ãååãã°ããŒãã«ãªä»£æ¿è³ç£
广çãªã°ããŒãã«åæ£ãšã¯ãåã«ç°ãªãåœã®æ ªåŒã«æè³ããã ãã§ãªããããŸããŸãªè³ç£ã¯ã©ã¹å šäœã«è³æ¬ãåºããããšãæå³ããŸããããšãã°ã
- ã°ããŒãã«æ ªåŒïŒ å é²åžå ŽïŒäŸïŒåç±³ã西ãšãŒããããæ¥æ¬ïŒããã³æ°èåžå ŽïŒäŸïŒäžåœãã€ã³ãããã©ãžã«ïŒãžã®ãšã¯ã¹ããŒãžã£ãŒã
- ã°ããŒãã«åµåžïŒ ããŸããŸãªåœã®åœåµïŒé婿å¿åºŠãä¿¡çšãªã¹ã¯ãç°ãªãå ŽåããããŸãïŒã瀟åµãã€ã³ãã¬é£ååµã
- äžåç£ïŒ 倧éžå šäœã®äžåç£ã«æè³ããREITïŒäžåç£æè³ä¿¡èšïŒãéããŠã
- ååïŒ éãç³æ²¹ãå·¥æ¥çšéå±ã蟲ç£ç©ã¯ãã€ã³ãã¬ã«å¯ŸãããããžãšããŠæ©èœããäŒçµ±çãªæ ªåŒãšã®çžé¢ãäœãå ŽåããããŸãã
- ä»£æ¿æè³ïŒ ãããžãã¡ã³ãããã©ã€ããŒããšã¯ã€ãã£ãã€ã³ãã©ãã¡ã³ããªã©ãäŒçµ±çãªè³ç£ã§ã¯æããããªãç¬èªã®ãªã¹ã¯ã»ãªã¿ãŒã³ç¹æ§ãæäŸããå¯èœæ§ããããŸãã
ããŒããã©ãªãªæ§ç¯ã«ãããESGïŒç°å¢ã瀟äŒãã¬ããã³ã¹ïŒèŠå ã®èæ ®
ãŸããŸãå€ãã®ã°ããŒãã«æè³å®¶ããããŒããã©ãªãªæ±ºå®ã«ESGåºæºãçµ±åããŠããŸããMPTã¯ãªã¹ã¯ãšãªã¿ãŒã³ã«çŠç¹ãåœãŠãŠããŸãããPythonã¯ESGã¹ã³ã¢ã«åºã¥ããŠè³ç£ããã£ã«ã¿ãªã³ã°ããããã«äœ¿çšã§ãããŸãã¯è²¡æ¿ç®æšãšå«ççã»ç°å¢çèæ ®äºé ã®ãã©ã³ã¹ããšããæç¶å¯èœãªå¹ççããã³ãã£ã¢ããæé©åããããã«äœ¿çšã§ããŸããããã¯ãçŸä»£ã®ããŒããã©ãªãªæ§ç¯ã«è€éããšäŸ¡å€ã®å¥ã®å±€ã远å ããŸãã
ã°ããŒãã«æè³å®¶åãã®å®è¡å¯èœãªæŽå¯
MPTãšPythonã®åãå®éã®æè³æ±ºå®ã«å€æããã«ã¯ãå®éçåæãšå®æ§çãªå€æã®çµã¿åãããå¿ èŠã§ãã
- å°ããå§ããŠå埩ããïŒ ç®¡çããããæ°ã®ã°ããŒãã«è³ç£ããå§ããããŸããŸãªå±¥æŽæéã詊ããŠãã ãããPythonã®æè»æ§ã«ãããè¿ éãªãããã¿ã€ãã³ã°ãšå埩ãå¯èœã«ãªããŸããèªä¿¡ãšçè§£ãåŸãããã«ã€ããŠãåŸã ã«è³ç£ãŠãããŒã¹ãæ¡å€§ããŠãã ããã
- 宿çãªãªãã©ã³ã¹ãéµïŒ MPTããå°ãåºãããæé©ãªãŠã§ã€ãã¯éçã§ã¯ãããŸãããåžå Žç¶æ³ãæåŸ ãªã¿ãŒã³ãçžé¢ã¯å€åããŸãã宿çã«ïŒäŸïŒååæããšãŸãã¯å¹Žæ¬¡ããšïŒå¹ççããã³ãã£ã¢ã«å¯ŸããŠããŒããã©ãªãªãåè©äŸ¡ããåžæãããªã¹ã¯ã»ãªã¿ãŒã³ã®ãããã¡ã€ã«ãç¶æããããã«é åããªãã©ã³ã¹ããŠãã ããã
- çã®ãªã¹ã¯èš±å®¹åºŠãçè§£ããïŒ MPTã¯ãªã¹ã¯ãå®éåããŸãããæœåšçãªæå€±ã«å¯Ÿããããªãã®å人çãªå¿«é©ã¬ãã«ãæãéèŠã§ããå¹ççããã³ãã£ã¢ã䜿çšããŠãã¬ãŒããªãã確èªããŠãã ãããããããæçµçã«ã¯çè«çãªæé©å€ã ãã§ãªãããªã¹ã¯ã«å¯Ÿããå¿ççãªèš±å®¹åã«åã£ãããŒããã©ãªãªãéžæããŠãã ããã
- å®éçæŽå¯ãšå®æ§ç倿ãçµã¿åãããïŒ MPTã¯å ç¢ãªæ°åŠçãã¬ãŒã ã¯ãŒã¯ãæäŸããŸãããæ°Žæ¶çã§ã¯ãããŸãããç¹ã«å€æ§ãªã°ããŒãã«åžå Žãæ±ãéã«ã¯ããã¯ãçµæžäºæž¬ãå°æ¿åŠçåæãäŒæ¥åºæã®ãã¡ã³ãã¡ã³ã¿ã«ãºãªãµãŒããªã©ã®å®æ§çèŠå ã§ãã®æŽå¯ãè£å®ããŠãã ããã
- Pythonã®èŠèŠåæ©èœã䜿çšããŠè€éãªã¢ã€ãã¢ãäŒéããïŒ å¹ççããã³ãã£ã¢ãè³ç£çžé¢ãããŒããã©ãªãªæ§æãããããããæ©èœã¯ãè€éãªéèæŠå¿µãã¢ã¯ã»ã¹å¯èœã«ããŸãããããã®èŠèŠåã䜿çšããŠãç¬èªã®ããŒããã©ãªãªãããããçè§£ããæŠç¥ãä»è ïŒäŸïŒã¯ã©ã€ã¢ã³ããããŒãããŒïŒã«äŒéããŠãã ããã
- åçæŠç¥ãæ€èšããïŒ Pythonã䜿çšããŠãåºæ¬çãªMPTã®éçãªä»®å®ãè¶ ããŠãå€åããåžå Žç¶æ³ã«é©å¿ããããåçãªè³ç£é åæŠç¥ãå®è£ ããæ¹æ³ãæ¢æ±ããŠãã ããã
çµè«ïŒPythonãšMPTã«ããæè³ãžã£ãŒããŒã®åŒ·å
ããŒããã©ãªãªæé©åã®æ ã¯ãç¹ã«ãã€ãããã¯ãªã°ããŒãã«éèã®ç¶æ³ã«ãããŠãç¶ç¶çãªãã®ã§ããçŸä»£ããŒããã©ãªãªçè«ã¯ã忣æè³ãšãªã¹ã¯èª¿æŽåŸãªã¿ãŒã³ã®éèŠãªåœ¹å²ã匷調ããåççãªæè³æ±ºå®ãè¡ãããã®å®çžŸã®ãããã¬ãŒã ã¯ãŒã¯ãæäŸããŸããPythonã®æ¯é¡ãªãåææ©èœãšçžä¹å¹æãçºæ®ãããšãMPTã¯ãå®éçææ³ãåãå ¥ããææ¬²ã®ãã誰ã§ãã¢ã¯ã»ã¹ã§ããã匷åã§å®çšçãªããŒã«ãžãšçè«çãªæŠå¿µãå€å®¹ãããŸãã
MPTã®ããã®Pythonããã¹ã¿ãŒããããšã«ãããã°ããŒãã«æè³å®¶ã¯ä»¥äžã®èœåãåŸãŸãã
- 倿§ãªè³ç£ã¯ã©ã¹ã®ãªã¹ã¯ã»ãªã¿ãŒã³ç¹æ§ãäœç³»çã«åæããçè§£ããã
- å°ççããã³æè³ã¿ã€ãå šäœã§æé©ã«åæ£ãããããŒããã©ãªãªãæ§ç¯ããã
- ç¹å®ã®Åãªã¹ã¯èš±å®¹åºŠãšãªã¿ãŒã³ç®æšã«åã£ãããŒããã©ãªãªã客芳çã«ç¹å®ããã
- åžå Žã®é²åã«å¯Ÿå¿ããé«åºŠãªæŠç¥ãçµ±åããã
ãã®ãšã³ãã¯ãŒã¡ã³ãã«ãããããèªä¿¡ã«æºã¡ããããŒã¿é§ååã®æè³æ±ºå®ãå¯èœã«ãªããæè³å®¶ãã°ããŒãã«åžå Žã®è€éããä¹ãè¶ããããé«ã粟床ã§è²¡åç®æšã远æ±ã§ããããã«ãªããŸããéèãã¯ãããžãŒãé²åãç¶ããã«ã€ããŠãå ç¢ãªçè«ãšPythonã®ãããªåŒ·åãªèšç®ããŒã«ã®çµã¿åããã¯ãäžçäžã®ã€ã³ããªãžã§ã³ããªæè³ç®¡çã®æåç·ã§ããç¶ããã§ãããã仿¥ããPythonããŒããã©ãªãªæé©åã®æ ãå§ããŠãæè³æŽå¯ã®æ°ããªæ¬¡å ãè§£ãæŸã¡ãŸãããã